Towards a quantification of the interactions between soil architecture and microbial dynamics under a dynamical soil architecture

Valérie Pot, Claire Chenu, Patricia Garnier

UMR EcoSys, Université Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France

Xavier Portell-Canal

Departamento de Ciencias, IS-FOOD, Universidad Pública de Navarra, Pamplona, Spain

UMR ECOSYS

EGU General Assembly 2023 Session SSS6.1 - Soil structure, its dynamics and its relevance to soil functions: feedbacks with soil biology and impacts of climatic conditions and soil management

Quantify and predict C stock evolution in soil

unravelling soil microbial response to changing environmental conditions → complexity of processes involved in soil microbial response

 physical processes (diffusion)
→ spatial accessibility of resources

 \rightarrow O₂ limitation

- physiological processes:

Soil particle Microbial cell Adsorbed substrate Pore water

→ C allocation patterns (respired, stored)

→ microbial turnover (necromass), metabolites

- biochemical processes:

 \rightarrow labile substrates, organo-mineral associations

- ecological processes:

 \rightarrow soil food webs (predation), engineers (bioturbation \rightarrow spatial accessibility)

Moyano et al., 2013 Schimel et al., 2018 Davidson & Janssens, 2006 Haggerty et al., 2022

Saturated condition:

Soil microbe response to changing environmental conditions

 \rightarrow different predictions of carbon stocks under warming:

- traditional biogeochemical models: reduced soil C stocks
- models including explicit microbial dynamics: wider range of responses

 → parametrization of explicit microbial dynamics remains challenging (CUE dynamics)

 \rightarrow understand processes at the scale of soil microhabitats:

- 2D/3D imaging tools (3D soil architecture and spatial accessibility)
- pore-scale modelling as a flexible tool (processes)

Wieder et al., 2013 ; Haggerty et al., 2022 ; Koenig et al., 2020; Pot et al., 2022

Elucidating the role of physical and physiological processes

→ complete factorial design (modelling scenarios)

Elucidating the role of physical and physiological processes

Higher spatial accessibility

Lower spatial accessibility

voger et al., ADVIR, 2015

\rightarrow balance between DOC concentration and diffusional mixing

Elucidating the role of physical and physiological processes

→ under optimal spatial accessibility physiological processes modulate soil microbial response, whereas under limited spatial accessibility C uptake remains low

\rightarrow geodesic distance x physiology

3R Arthrobacter sp.

 \rightarrow geodesic distance x physiology

E-1 °W/W 0 0 0 5000 15000 Geodesic distance [μm]

3R Arthrobacter sp.

\rightarrow geodesic distance x physiology

3R Arthrobacter sp.

9R Arthrobacter sp.

 \rightarrow geodesic distance x physiology

3R Arthrobacter sp.

9R Arthrobacter sp.

\rightarrow geodesic distance: a good candidate?

Parry et al., Eur J Soil Sci 1997 Rawlins et al., Soil 2016 Rohe et al., Biogeosciences 2021

→ Indicator based on the geodesic distance between clusters of POM and air-filled pores

Ortega-Ramirez et al., Geoderma 2023

Towards a dynamical soil architecture – how-to?

→ Indicators could be introduced in statistical functions (CUE)
- to account for the role of spatial accessibility (macroscopic
C turnover models)

→ Robustness of these indicators (static soil architecture)

- \rightarrow highly dynamic:
 - water content (diffusion pathways)

expansion/creation of pores, retraction/closure of pores
(abiotic/biotic factors)

- relocation of C resources (roots, meso/macrofaune)

Qauntification of soil architecture dynamics

\rightarrow from macroscopic to microscopic measurements

 μ CT image: 30 μ m voxel resolution

Structural phase

Proportional phase

Bottinelli et al., Geoderma, 2016

→ dynamics of macropores
could be reproduced in pore scale models by morphological
operations (opening, dilation)

Lissy, PhD, 2019 Sammartino et al., VZJ 2015

Including a dynamical soil architecture in pore-scale models

 \rightarrow 2D model of spatial reorganization of solid particles (intra-particle binding forces):

- production of sticky agents
- CA jumping rules

Crawford et al., 2012 ; Ray et al., 2017

Zech et al., 2022

figure adapted from Zech et al., 2022

- → dynamical POM decomposition rates related to spatial location (occluded)
- \rightarrow CO₂ production

Including a dynamical soil architecture in pore-scale models

\rightarrow describing friction and cohesion forces between particles using contact laws: 3D DEM model (granular media) Smilauer et al., 2015

Barbosa et al., 2022

\rightarrow unsaturated conditions: hydro-mechanic coupling – 2PFV-DEM model

Interfacial pressure, fluid pressure

 \rightarrow elasto-plastic deformation \rightarrow calibration for soils

Yuan & Charevre 2017

Conclusions

 \rightarrow 3D imaging of soils allow to quantify the interactions between soil architecture and microbial dynamics

- \rightarrow pore-scale models allow to disentangle the physical and physiological processes in the soil microbial response
- → spatial indicators to quantify spatial accessibility and contribute to explain soil microbial response

→ spatial indicators could be introduced in statistical functions to modulate CUE to account for the role of spatial accessibility (macroscopic C turnover models)

 \rightarrow several approaches to include soil architecture dynamics have been developped and should be used to assess the robustness of such indicators

Assessing the multiple effects of dissolved organic matter on the transport of organic pollutants in subsoil horizons through a modular modeling approach

Pierre Benoit¹, Jeanne Dollinger², François Lafolie³, Florian Chabauty¹, Valérie Pot¹

¹UMR ECOSYS, Université Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France ²UMR LISAH, Université Montpellier, INRAE, Institut Agro Montpellier, IRD, Montpellier, France ³UMR EMMAH, INRAE-Avignon Université, Avignon, France

Contact : pierre.benoit@inrae.fr ; valerie.pot@inrae.fr

Fraternio

INRAE

EGU General Assembly 2023 Session HS8.1.3 - Emerging contaminants and PFAS in soil-groundwater systems. Fate, risks, remediation and mitigation

> Introduction

Importance of DOM cycle in soils

Kaiser & Kalbitz, 2012

> <u>Rationale</u>

Multiple roles of dissolved organic matter (DOM) in the transport of trace organic contaminants

> <u>Rationale</u>

Do we need a new model ?

- DOM production, sorption and transport in soils *Tipping et al (1988, 2012) ; Michalzik et al (2012)*
- Co-transport of contaminants and colloids *Simunek et al. (2006) ; Flury & Qiu (2008)*
- Interactions DOM and Organic Contaminants Magee et al (1991) ; Smilek et al (2015)
- Co-sorption and cumulated sorption Tostsche et al. (1996) ; Wehrer & Tosche (2005)
- To help elucidating the multiple roles of DOM and accounting for DOM quality/reactivity and dynamics

PolDOC model implemented in the VSoil modeling platform

- modularity of the platform to couple
 - > available 1D water flow and solute transport models
 - novel reactivity modules for organic contaminants and DOM
- sink/source terms in the transport equation used to account and characterize the interactions between contaminants, DOM and the soil solid phase

https://www6.inrae.fr/vsoil/

> The Pol DOC Model

Main hypotheses

- 1D Richards' equation with mobile and immobile waters (Lafolie, 1991)
- Four solutes are transported : native Bt DOM (DOC_{Bt}), topsoil DOM (DOM_{SURF}), free contaminant (C_{POL}), contaminant-topsoil DOM association (C_{POL}-DOM_{SURF})
 - Pollutants are applied at the soil surface
 - DOM_{SURF} more aromatic phenolic compounds
 - DOM_{Bt} more carbohydrates and nitrogen-rich compounds highly degraded compounds and smaller compounds
 - involved into mineral-association in mineral horizons (Guggenberger & Zech, 1994; Kaiser et al., 2004; Kaiser & Kalbitz, 2012)
 - less expected to associate with organic pollutant

* Physicochemical and biological processes are described by sink/source terms (Γ)

> Experimental data

		1			Undisturbe	ed soil core - Bt	horiz	on	
LA : Tilled LA : Ploug	Hz (silt) h Pan	Surface Soil Sampling	Qua	li			awc M		
E : Eluviat	ed Hz					184	E		
BTg ou BT Redoxic C	gd : layey Hz	Bt Horizon Sampling		ъН	OC (g kg ⁻¹)	CEC (cmol+kg ⁻¹)	Bt	Silt	Sand
(Albeluvisol, WRB FAO, 2008)			-					
(-								(g kg ')	
		Ap hz (0–28 cm)	Control	7.0	10.2	8.6	146	790	64
Uns	aturated Column Experime	nt	Amended	6.9	15.8	9.8	147	784	69
		E hz (35–50 cm)		7.3	3.7	9.2	219	724	58
•••	with organic contaminants	Bt hz (60–90 cm)		7.5	2.3	14.9	311	646	43
**	bromide tracer	IC hz (140–160 cm)	7.6	1.6	13.9	238	702	41
*	flow interruption (10 d)					Chaba	utv et	al 201	6

* with or without DOM in the inflow

INRA

Chabauty et al., 2016

EGU - session HS8.1.3 27 April 2023

> Experimental data

Environ Sci Pollut Res DOI 10.1007/s11356-015-5938-9

RESEARCH ARTICLE

Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices

Florian Chabauty¹ · Valérie Pot¹ · Marjolaine Bourdat-Deschamps¹ · Nathalie Bernet¹ · Christophe Labat¹ · Pierre Benoit¹

	Log K _{ow}	K _{oc} (L/kg)	DT 50 (d)
Isoproturon IPU	2.5 ^a	122ª	12 ª
Epoxiconazole EPX	3.3 ª	1073ª	354ª
Sulfamethoxazole SMX	0.9	1.2	59
Ibuprofen IBP	4.9	nd	nd

CrossMark

EGU - session HS8.1.3 27 April 2023

INRAØ

Two pools of DOM with different sorption parameters

	_	k a,m*	k d,m	k h	μ
			(s-1)		
Synthetic	DOC _{Bt}	4.10 ⁻⁸	1.10 ⁻⁸	3.10 ⁻¹¹	2.10 ⁻⁷
Compost	DOC _{Bt}	4.10 ⁻⁸	1.10 ⁻⁸	3.10 ⁻¹¹	5.10 ⁻⁶
Soil	DOC _{SURF}	3.10 ⁻⁵	1.10 ⁻⁵	0	5.10 ⁻⁶

- DOM from surface soil more reactive in sorption
 - Confirmed by fluorescence
 - In agreement with Kaiser & Kalbitz (2012)

> <u>Results</u>

Contaminant Transport Isoproturon

		Compost
	Synthetic	Amended
	Water	Soil DOM
k _{а,POLm} ∗ (s⁻¹)	1.0 10-4	6.0 10 ⁻⁵
k _{d,POLm} (s-1)	1.8 10 ⁻⁵	1.5 10 ⁻⁵
<u>μ (s-1)</u>	6,7.10 ⁻⁷	7.0 10 ⁻⁶

INRAØ

> <u>Results</u>

INRA@

Contaminant Transport Epoxiconazole

	Synthetic	Control Soil DOM		
		EPX-		
	EPX	EPX	DOC _{SURF}	DOC _{SURF}
k _{a,i,m} (s-1)	3.0 10 ⁻⁴	1.0 10 ⁻³	1.5 10 -4	4.0 10 ⁻⁵
k _{d,i,m} (s-1)	9.0 10 ⁻⁶	2.0 10 ⁻⁵	6.0 10 ⁻⁵	2.0 10 ⁻⁷
μ (s-1)	2.3 10 ⁻⁸	5.0 10 ⁻⁶	5.0 10 ⁻⁶	5.0 10 ⁻⁶
k _{ass} (s-1)	-	1.0 10-4	-	-
k _{dis} (s-1)	-	-	5.0 10 ⁻⁶	-

EGU - session HS8.1.3 27 April 2023

- Physical non-equilibrium transport conditions were identified and quantified with PolDOC
- Model showed that the Bt mineral horizon acted as a sink to partly retain DOM_{SURF}
- For polar compounds : Accelerated transport in presence of DOM due to competition for sorption – Additional processs : increased degradation (μ)
 - Not shown : Differences between IPU/SMX transport could be explained by different sorption reactivity with the soil solid phase
- For hydrophobic compounds such as epoxiconazole : Increased and accelerated transport - in presence of DOM due to co-transport (following association with DOM) but also increased sorption (cumulative sorption)
 - Increased leaching of EPX in presence of DOM_{SURF} required the activation of cotransport with DOM_{SURF}

> The Pol DOC Model

INRAØ

EGU - session HS8.1.3 27 April 2023

UNIVERSITE PARIS-SACLAY

French ACROSS 2022 campaign: First results from CO₂/H₂O, energy and VOC fluxes measurements at the Rambouillet tower supersite

Pauline Buysse, Benjamin Loubet, Florence Lafouge, Alain Fortineau, Jeremie Depuydt, Raluca Ciuraru, Baptiste Esnault, Celine Décuq, Pedro-Henrique Herig-Coimbra, Mathis Lozano, Vincent Michoud, and Christopher Cantrell

ECOSYS, INRAE-AgroParisTech, Université Paris-Saclay, France Univ. Paris Cité and Univ. Paris Est Créteil, CNRS, LISA, France

EGU, Vienna, 26/04/2023

Introduction and objectives

- VOCs: Importance for atmospheric chemistry
- Forests: large emitters of BVOCs (55%; Karl et al, 2009)

This work is part of the ACROSS Rambouillet campaign (2022)

Objectives:

Fluxes of CO₂, energy, heat Emissions (and deposition) of VOCs Response to heat and drought stresses

Site set-up

• Site description:

- The Rambouillet mixed forest dominated by oaks and pines
- Located South-West of Paris

Measurements set up

- Campaign duration: 23 June 25 July 2022
- PTR-Qi-TOF-MS with E/N: 120 Td
- 10 Hz on-line peak integration and data • storage
- Eddy covariance and profiles* of VOCs
- Turbulence
- CO₂ and H₂O fluxes and profiles* •

	Essences	% area
	Oak	68%
to the it	Pines	19%
	Open spaces	6%
	other deciduous	3%
a and a second	Beech	2%
	Chesput	206

Rambouillet super-site tower

40m-long

inlet line

Methods, Data treatment

This talk → m/z < 220

Results: most emitted (9) and deposited (3) VOCs

Main emitted compounds:

- Monoterpenes (m/z 137.130)
- Isoprene (m/z 69.070)
- Methanol (m/z 33.033)

Diurnal emission pattern
Response to Tair and radiation

Deposited compounds:

- First part of the campaign mostly
- Few compounds
- Heavy compounds during some specific periods (see further)

Results

VOC flux dynamics over warm and dry period for some other compounds

➔ Likely reduced emissions as of 10 July for most of these compounds

→ More analyses to be done

Depositing compounds

- Some heavy compounds showed a high deposition flux on weeks 25 (20 June) and 26 (27 June), followed by an emission on week 27 (4 July)
- Nitrogen and sulphur compounds
- Needs more analysis

Conclusion and perspectives

Reminder: these first results are based on preliminary data.

>Main compounds emitted above the canopy were

- monoterpenes (m/z 137.130),
- isoprene (m/z 69.070),
- methanol (m/z 33.033),
- as well as a few compounds over short periods: sesquiterpenes (m/z 205.186), acetic acid (m/z 61.029), acetone, possibly GLV,...
- Possible increase of monoterpenes and sesquiterpenes with temperature. Isoprene, methanol seemed to remain unaffected. Needs further investigation.

> Perspectives:

- * Peak integration and mass calibration will be reprocessed
- * Data filtering will be further refined based on PTR pressure and source parameters
- * Disturbances due to other teams working on top of the tower will be also filtered
- * Looking into high m/z compounds (m/z > 220)

Thank you to all the team! And thank you for your attention

